LIFE SCIENCES FOR ENGINEERS

			E S CIEI (CES	FOR ENGINEE						
Cou		19BS1303	Year	II	Semester	I				
Cou	ırse	Basic								
		Busic	Branch	CE	Course Type	Theory				
Coto	CONT	Sciences	Dianch	CL	Course Type	Theory				
Cate						2 7 1 2				
Cre	dits	2	L-T-P	2-0-0	Prerequisites	Nil				
Contin	nuous	Semester								
					Total					
Inte	rnal	30	End	70		100				
Internal		30	Linu	70	Marks:	100				
Englis	4:		Evaluations		wai Ks.					
Evalua	ation:		Evaluation:							
	Course Outcomes									
After su	ıccessful	completion of the	course, the stude	ent will be able to						
CO1	Apply the principles of biology to create tangible and economically viable engineering goods.									
CO2	Know and illustrate bio-engineering field.									
	Analyse the importance of bioenergetics and apply the knowledge to improve the living									
CO3	standards of societies.									
CO4	Gain basic knowledge in genetic engineering.									
CO5	CO5 Design and develop new technologies in genetic industrial field.									

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						2							
CO2	3						2							
CO3	3						2							
CO4	3						2							
CO5	3						2							

UNIT NO	Contents	Mapped COs
Ι	Introduction to Biology	
	Comparison of Biological organisms with manmade systems- eye and	CO1
	camera, flying bird and aircraft. Classification of living organisms-	CO3
	Cellular basis of life, differences between prokaryotes and eukaryotes,	CO5
	classification on the basis of carbon and energy sources	
II	Bio-molecules	
	Structure and functions of proteins and nucleic acids, hemoglobin,	CO1
	antibodies. Enzymes-Industrial applications, Fermentation and its industrial	CO2
	applications.	
III	Bioenergetics and Respiration	CO2
	Glycolysis and TCA cycle, Electron transport chain and oxidative	CO2
	phosphorylation, Mechanism of photosynthesis. Human physiology.	CO3
IV	Genetic Engineering	CO2
	Mendel's laws, gene mapping, Mitosis and Meiosis, Epistasis, single gene	CO4
	disorders in humans. Genetic code.	CO5
V	Recombinant DNA Technology	CO1

Recombinant vaccines, transgenic microbes, plants and animals. Animal	CO4
cloning, biosensors, biochips.	CO5
•	

Learning Recourses

Text Books

- 1. N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2018.
- 2. Arthur T Johnson, Biology for Engineers, CRC press, 2011.

Reference Books

- 1. Alberts et al., The molecular biology of the cell, 6/e, Garland Science, 2014.
- 2. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.
- 3. John Enderle and Joseph Bronzino Introduction to Biomedical Engineering, 3/e, 2012.